





Ph D position in Nanomaterials Chemistry and Catalysis

# ELABORATION OF NON-NOBLE BIMETALLIC NANO-ALLOYS WITH CONTROLLED MORPHOLOGIES FOR CATALYTIC APPLICATIONS

## INSTITUTION AND LABORATORY

UNIVERSITÉ PARIS CITÉ, INTERFACES, TRAITEMENTS, ORANISATION ET DYNAMIQUE DES SYSTÈMES (<u>ITODYS</u> LAB), NANOCAT TEAM

## JOB DESCRIPTION

Nano-alloys are an exciting class of materials with many applications in different important technological fields. This is particularly true in catalysis where synergetic effects are expected, compared to their mono-metallic counter-parts. The aim of this thesis is twofold: i) to develop soft-chemistry synthetic routes for the formation of non-noble bimetallic nano-alloys with well-controlled compositions, sizes and morphologies, and ii) to implement original catalytic routes, preferably under solvent-free conditions, using these unsupported nanocatalysts. This Ph D is funded by the French National Research Agency in the framework of the project <u>ANR GLYNANO</u>, gathering two other laboratories in Poitiers (IC2MP) and in Lyon (ENS Lyon), renowned respectively in the fields of catalysis and theoretical chemistry.

The recruited Ph D student at ITODYS will have first to prepare bimetallic particles and characterize them using relevant physico-chemical techniques before performing preliminary catalytic tests to assess their reactivity and recyclability. At ITODYS, they will be tested for an important reaction: the acceptor-less dehydrogenation of alcohols (ADA). Besides the generation of the desired carbonyl product (aldehyde or ketone), highly valuable hydrogen is also formed. As-generated hydrogen can be used directly in the same catalytic system to promote the *in situ* hydrogenation of another molecule, for instance the hydrogenation of an imine. The as-synthesized nanoparticles will be transferred in a second time to IC2MP in order to evaluate the catalytic properties for the amination of alcohols, using preferentially bio-sourced poly-alcohols such as glycerol. In order to decipher the mechanisms accounting for the formation of the different reaction products on the exposed crystal facets, and obtain a complete picture of the catalytic system, theoretical calculations will be performed by theoricists at the ENS Lyon.

## KEY WORDS

NANOMATERIALS, SYNTHESIS, ALLOY, ACCEPTORLESS DEHYDROGENATION OF ALCOHOLS, TANDEM CATALYSIS, HYDROGEN

## REQUIRED SKILLS

A Master in physico-chemistry or materials chemistry is required. An experience in the synthesis of nano-objects will be appreciated but is not mandatory.

## TIMESCALE

Start date of the thesis: 1st October 2023

## CONTACT